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Module 6: Two Dimensional Problems in Polar
Coordinate System

6.1.1 INTRODUCTION

In any elasticity problem the proper choice of the co-ordinate system is extremely
important since this choice establishes the complexity of the mathematical expressions
employed to satisfy the field equations and the boundary conditions.

In order to solve two dimensional elasticity problems by employing a polar co-ordinate
reference frame, the equations of equilibrium, the definition of Airy’s Stress function,
and one of the stress equations of compatibility must be established in terms of Polar
Co-ordinates.

6.1.2 STRAIN-DISPLACEMENT RELATIONS
Case 1: For Two Dimensional State of Stress

Figure 6.1 Deformed element in two dimensions

Consider the deformation of the infinitesimal element ABCD, denoting r and 8 displacements
by u and v respectively. The general deformation experienced by an element may be
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regarded as composed of (1) a change in the length of the sides, and (2) rotation of the sides
as shown in the figure 6.1.

Referring to the figure, it is observed that a displacement "u" of side AB results in both radial
and tangential strain.

Therefore, Radial strain = & = Z—u (6.1)

r

and tangential strain due to displacement u per unit length of AB is

_(r+u)d0—rd¢9:u

= — 6.2
(€au oy ; (6.2)
Tangential strain due to displacement v is given by

51 1a
&, v - 63
R (63)

Hence, the resultant strain is

go= (&o)u + (&gl

u 1(ov
= —+- = 6.4
& r r(&@) ©4)

Similarly, the shearing strains can be calculated due to displacements U and Vv as below.

Component of shearing strain due to U is

rdé@ _F 20

(7o), =@ 1[(3“) (6.5)

Component of shearing strain due to v is

_ V(Y
(o= = (J (6.6)

Therefore, the total shear strain is given by

yr@ = (}/re)u +(}/r9 )v
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S Lfou), v (v
o= r[aej%r [r} (6.7)

Case 2: For Three -Dimensional State of Stress

Figure 6.2 Deformed element in three dimensions

The strain-displacement relations for the most general state of stress are given by

ou 1(6vj (u] ow
&= —, g =—|—|+|—| & =—
or r\ o0 r 01

ov 1(ou v
o= —+—| — |-| = 6.8
7o or r(aej (r} ©8)
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%) (5)
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00 01
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Yo = ——F| =7
oz or

6.1.3 COMPATIBILITY EQUATION

We have from the strain displacement relations:

Radial strain, &, = 6_u (6.9a)
or
1)\ ov u
Tangential strain, ¢, =| — |— +| — 6.9b
J ¢ [rjae (rj (6.90)
ov (Vv 1)\ou

and total shearing strain,y,, = ——| — |+| — |— 6.9c
’ 70 = or (r) (rjae (6.9¢)

Differentiating Equation (6.9a) with respect to 6 and Equation (6.9b) with respect to r, we
get

2
Og, _ o°u (6.90)
00 orof
og, (1)8u (1) 1 % (1] ov
__ v _ — u+—- Y I
or or \r? r oro r’ ) o6

WO L 1 o

r 8!‘80 r 00

208 & (1}, (6.9)
or r 8r60 r

Now, D|fferent|at|ng Equation (6.9¢) with respect to r and using Equation (6.9d), we get
87/r9 _82 (1)@+l+(1) o%u (1)8u
or or? or r? oroo 00

_ 0% 1(8v Vv 1auj+l o%u

T’ o r rod) rorod
oy, o (1 1)oe
- r — _ | = + — r 69
or  or? (r]m (rjae (©.90

Differentiating Equation (6.9¢e) with respect to r and Equation (6.9f) with respect to 6, we
get,

) (o (i () (e e
or? r)or \r?2)" \r)or?00 \r?)oroo r)or r?? '
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2 3
and 0V _ 82v _[ljayre +( j@ 82
orof or0o0 \r) 00 00
2 3 2
(- ()5
r)orof rjor<o6 \r°) o0 r-)oé
Subtracting Equation (6.9h) from Equation (6.99) and using Equation (6.9¢e), we get,
ol G e ()5
o \rj)oaree \r)or \r? oro0 or \r?) o6 2)06% r?
_1(0e. ) 1fe 103V g _E 0g, 107w 10%,
rier ) rlr raore0 r o r 00 roo
_(1)oe (1 6&_ 889 67/r9 B 0%,
r)or or r? ) 962
1)\ 0¢, 2 889 67/r9 1
=| — - — |— 4+ —_— | —
r)or \r)or \r? r?
()% ()55 (ZJ% b ( J
= +| = =——+ -
r<) oo r)oro6 or

6.1.4 STRESS-STRAI

In terms of cylindrical coordi
and strain are given by

N RELATIONS

nates, the stress-strain relations for 3-dimensional state of stress

1
&= E[ar -v(o, +0,)]
1
o= E[O-Q _V(Gr +O—z)] (610)
1
&= E[Gz _V(Gr + 0-9)]
For two-dimensional state of stresses and strains, the above equations reduce to,
For Plane Stress Case
1
&= E(Gr -vo,)
1
Ep= E(Ge —VO'r) (611)
1
Vro= Erre
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For Plane Strain Case

%[a—v)ar—w@]

= a%”[(l—v)a@ —75,] (6.12)
1

Vro= ETrG

6.1.5 AIRY’'SSTRESS FUNCTION

With reference to the two-dimensional equations or stress transformation [Equations (2.12a)
to (2.12c)], the relationship between the polar stress components o,,0,and 7,,and the

Cartesian stress components o,,c, and 7, can be obtained as below.
o, =0,008° 0 +0,sin* 6 +1,, sin20
o, =0,008°0+0,sin"0 -1, sin20 (6.13)
T = (ay -0, )sin 0cosf +1,, 0820

Now we have,
2 2 2
0-2% o0 oIt 614
oy OX oxoy
Substituting (6.14) in (6.13), we get
2
o, = aqjcos 0+ ¢sm 0 — 6¢sin29
ox? oxoy
2
o, :%cos2 0+ o ¢sm 0+—— ' sin 260 (6.15)
OX oy® OXoy

2 2
T,y = %—% sin@ cos@ — 99 cos 260
x> oy? oxoy

The polar components of stress in terms of Airy’s stress functions are as follows.

(R

0-9=_¢ ( W [ljﬁ (6.17)
00 r)oroé

The above relations can be employed to determine the stress field as a function of r and 6.
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6.1.6 BIHARMONIC EQUATION

As discussed earlier, the Airy’s Stress function ¢ has to satisfy the Biharmonic equation
V*¢ =0, provided the body forces are zero or constants. In Polar coordinates the stress

function must satisfy this same equation; however, the definition of V“operator must be
modified to suit the polar co-ordinate system. This modification may be accomplished by

transforming the V* operator from the Cartesian system to the polar system.
Now, we have, X =rcosfd, y=rsind

r’=x*+y*and @ = tanl(lJ (6.18)
X

where r and 6 are defined in Figure 6.3

Differentiating Equation (6.18) gives

or _ X _rcosé

=—= =C0sO
oX r r
g:l:rsmezsine
oy r r
%__(lJ_rsinH__(sinej
OX r? r2 r
%_ X _rcos@ cos6

== =

oy r r? r
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Figure.6.3

2rdr =2xdx + 2y dy

sdr = [ijdx + (ljdy
r r
Also, sec’ 0 dO = _(x_yzjxy + (d_yJ

X
% _ogor o900
OX Or ox 06 ox

X°+y sec” 0\ x 00

% =C0S 9[%j _ﬂ(%j
8X 6[‘ r 89

0 _oper 0900
oy ordy 06 oy

29 _in 8[%j + ﬁ(%j
oy or r o0

Similarly,
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Now,az—f (COSQ(‘MJ ﬂ(%n
OX or r (o0

0% _(25in0cos€] 0% . sin” 6 (62¢]+ Zsinecose(%}r sin’ @ (%j

=cos? 6

or? r oro0 rz 06?2 r? 00 r (or
()
Similarly,
62¢ ¢ 2sinfcosO 0%¢ (23in00030]6¢ cosze(a¢j cos* 0 o%¢
=sin? 6 —t—
6r2 r oro6 r2 00 r \or r2 002
(i)
And,

0% (sm@cos@)&qﬁ © SiNgcosd 82¢ cos20 0°¢ _(cosZGj%_(sin@cos@) 0%
ooy r or af 1 oroe r2 )oo r? 06?
(iii)

Adding (i) and (ii), we get

62¢+82¢:62¢ [j¢ [ j ‘¢
ox?  oy®  or? or 06*

|ev¢_a¢ ’9 0% [jfﬁ [ j “¢
ox2 oy’ ar? or 06?

o 10 10" \(d% lop 1%
or Vip=V*(V’p)=| —+=-—+— ik
¢ (Vo) ( 2 j(arz ror r’oo°

o’ ror r?o6*

The above Biharmonic equation is the stress equation of compatibility in terms of Airy’s
stress function referred in polar co-ordinate system.
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